Melatonin prevents the delayed death of hippocampal neurons induced by enhanced excitatory neurotransmission and the nitridergic pathway.

نویسندگان

  • S D Skaper
  • B Ancona
  • L Facci
  • D Franceschini
  • P Giusti
چکیده

The mechanisms by which neurons die after stroke and status epilepticus and related neuropathological conditions are unclear, but may involve voltage-dependent Na+ channels, glutamate receptors, and nitric oxide (NO.). These questions were investigated using an in vitro primary cell culture model in which hippocampal pyramidal neurons undergo a gradual and delayed neurodegeneration induced by enhanced excitatory neurotransmission. When cells were treated with Mg2+-free, glycine-supplemented medium for a brief period (15 min) and examined 24 h later, approximately 30-40% of the neurons had died. Cell death could be inhibited by blockers of voltage-sensitive Na+ channels and by N-methyl-D-aspartate receptor antagonists. Application of either the endogenous antioxidant melatonin (EC50: 19.2+/-2.8 microM) or the NO. synthase inhibitor Nomega-nitro-L-arginine after, but not during, Mg2+-free exposure protected against delayed neuronal death; significant neuroprotection was observed when the addition was delayed for up to 4 h. This operational time window suggests that an enduring production of NO. and reactive oxygen species from neuronal sources is responsible for delayed cell death. A role for reactive oxygen species in this injury process was strengthened by the finding that, whereas neurons cocultured with astroglia were more resistant to killing, agents capable of lowering intracellular glutathione negated this protection. Because secretion levels of melatonin are decreased with aging, reductions in this pineal hormone may place neurons at a heightened risk for damage by excitatory synaptic transmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental Effects of Melatonin on Synaptic Plasticity of Hippocampal CA1 Neurons in Visual Deprived Rats

Background & Aims: Change in visual experience impairs circadian rhythms. In this study, The effects of visual deprivation during critical period of brain development and melatonin intake on synaptic plasticity of hippocampal CA1 neurons were evaluated. Methods: This experimental study was done on male rats kept in standard 12 hour light/dark condition (L...

متن کامل

Developmental effect of light deprivation on synaptic plasticity of rats' hippocampus: implications for melatonin

Objective(s): There are few reports have demonstrated the effect of a change-in-light experience on the structure and function of hippocampus. A change-in-light experience also affects the circadian pattern of melatonin secretion. This study aimed to investigate developmental effect of exogenous melatonin on synaptic plasticity of hippocampus of light deprived rats. Materials and Methods: The ...

متن کامل

Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats

Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 1998